
Advanced Mathematical Models & Applications

Vol.5, No.1, 2020, pp.80-94

A COMPARATIVE STUDY BETWEEN TV, TV2, BTV AND COMBINED
MODELS FOR THE MULTI-FRAME SUPER-RESOLUTION

Amine Laghrib∗

Sultan Moulay Slimane University, Meghila, Beni-Mellal, Morocco

Abstract. Variational models are considered as successful methods for image processing and analysis, especially

in the case of the super-resolution algorithms. In this paper, we present some comparisons between the Total

Variation (TV) and other high-order variational models and provide detailed discretization of these models and

numerical implementation for solving these models. We demonstrate the advantages and disadvantages between

these models in the context of super-resolution through many experiments. The methods and techniques can also

be used for other applications, such as image segmentation, dehazing and illumination reduction.
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1 Introduction

Image super resolution (SR) reconstruction is a challenging problem in image processing. The
principle of this technique is to build a high-resolution (HR) image by fusing and restoring
degraded low-resolution (LR) ones. The SR is used in many applications, such as MRI images,
video surveillance and satellite imaging.

Several techniques of the muliframe SR have been proposed to enhance the quality of the
obtained HR image with different success degrees (El Mourabit et al., 2017; Laghrib et al., 2016,
2018a, 2017, 2019a). To reduce the complexity of the SR approaches, it is decomposed into two
steps: first, finding a blurred HR image from the LR measurements, then, deblurring and
denoising it. Both steps are critical to the quality of the HR image. We concentrate here on
the second one; we impose some prior on the HR image in a Bayesien framework. Some of
the widely-used prior functions are Total Variation (TV)-type regularizers (Rudin et al., 1992;
Caselles et al., 2015; Laghrib et al., 2019b). Another successful regularization is the bilateral
total variation (BTV) with the L1 norm proposed by Farsiu et al. (2004). These approaches
are successful in recovering images with sharp edges but fail on images with smooth surface,
suffering from the staircasing effect. To overcome this defect, high-order variational approaches
(Chan et al., 2000; Bergounioux & Piffet, 2010; Chambolle & Lions, 1997) can be used. Despite
its success in numerous denoising problems, it suffers from blur effect. To perform the process
of simultaneous deblurring and denoising, a combined first and second order regularization
have been performed (Chambolle & Lions, 1997; Gottlieb et al., 2001; Papafitsoros & Schönlieb,
2014) has been used and proved its robustness in image restoration. In the super-resolution
context, two combined high-order models have been introduced, such as: the combined TV
and BTV regularizations (Laghrib et al., 2015) and the combined TV2 and BTV regularizations
(Laghrib et al., 2018b).
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In the following, we present a comparative study between the above high-order and TV
models in the context of the super-resolution.

2 Problem formulation

The observed images of a real scene are usually in low resolution due to some degradation
operators. In practice, the acquired image is corrupted by noise, blur and sampling. We assume
that the LR images are taken under the same environmental conditions using the same sensor.
The relationship between an ideal HR image X of size M = rN1 × rN2 denoted by a column
vector X = [x1, x2 . . . , xM ]⊤, where r ≥ 1 is the downsampling factor and the LR images Yk of
size N1×N2, represented also by a column vector Yk = [yk,1, yk,2 . . . , yk,N1N2 ]

⊤, where k = 1 . . . n
and n is the number of the LR images, is given by the relation

Yk = DFkHX + ek, ∀k = 1, 2, . . . , n, (1)

where H represents the linear blur operator of kernel size M ×M , D represents the sampling
operator of size N1N2 ×M , Fk is a geometric warp matrix of size M ×M representing a non-
parametric transformation that differs in all frames, and ek a vector of size N1N2 represents the
additive noise for each image, assumed to follow a zero mean Gaussian distribution.

In the presence of different operators of degradation (sampling, blur and noise), the problem
becomes very unstable. To deal with it, we use the same approach as in Farsiu et al. (2004) that
suggests to separate it into three steps:

1. Computing the warp matrix Fk for each image.

2. Fusing the low-resolution images Yk into a blurred HR version B = HX.

3. Finding the estimation of the HR image X from B.

To compute the warp matrix Fk, there are many approaches in the literature, we use here a
non parametric registration (Laghrib et al., 2016). For the fusion step, we use the technique of
Farsiu et al. (2004), recalled in the following section.

2.1 The fusion step

The first part of our algorithm is to compute the blurred HR version B = HX. We assume
that the additive noise is Gaussian distributed and follows the same distribution for all low
resolution images. The blurred image B̂ can be found via the principle of maximum likelihood
estimator (ML). The ML suggests the choice of B̂ that maximizes the likelihood function, which
also minimizes the negative log-likelihood function

B̂ = argmax
B

{p(Yk|B)}

= argmin
B

{− log(p(Yk|B))}

= argmin
B

n∑
k=1

∥Yk −DFkB∥2L2 . (2)

The steepest descent algorithm or other optimization methods can be used to resolve this min-
imization problem.
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2.2 Deconvolution and denoising step

In this step we try to find the HR image X by deblurring and denoising the image B̂. Unfor-
tunately we are facing an unstable inverse problem due to the presence of noise and blur at the
same time. To overcome this difficulty, we impose some prior knowledge about the image in a
Bayesian framework. Since B̂ has white Gaussian noise, the measured vectors Yk also undergo
a Gaussian blur. Via the Bayes rule, finding the HR image X leads us to look for the solution
of the following minimization problem (3) using the maximum a posteriori (MAP) estimator

X̂MAP = argmax
X

{p(X|B̂)}

= argmax
X

{
p(B̂|X)p(X)

p(B̂)

}
= argmin

X

{
− log(p(B̂|X))− log(p(X))

}
, (3)

where p(B̂|X) represents the likelihood term (data attachment term) and p(X) denotes the prior
knowledge on the HR image. To formulate precisely this problem, we need to assume a prior
Gibbs function (PGF). This is the role of the regularization term.

2.3 The prior Gibbs function

A well-known manner to represent the image prior PGF function p is the Gibbs function repre-
sented by

p(X) = cG · exp {−G(X)} , (4)

where cG is a normalization constant and G is a non negative energy function. In the following,
we will see four choice of this function and we will make some comparison results.

3 Total variation regularization (TV)

The main advantage of using the TV regularization is the use of a convex function with respect
to the variable X, to stop the isotropic lissage behavior near edges (Rudin et al., 1992). For the
super-resolution restoration part, this problem is formulated such as

p(X) = α exp {−∥∇X∥1} . (5)

To show the existence of the solution to this minimization problem, we use the classical vari-
ational calculus based on the relaxation method on the space of bounded variation BV (Ω)
(see Aubert & Kornprobst (2006) for more details on the proof).

The discretization is an essential step in solution of the obtained minimization problem. We
give here some notations, we note Xi,j , i = 1, ...N, j = 1, ...,M : the discrete image, X = RN×M

: the set of discrete image of size N ×M et Y = X ×X.

The spaces X and Y are endowed by the scalar products < . , . >X and < . , . >Y , where

∀X,Y ∈ X , < X, Y >X=
N∑
i=1

M∑
j=1

Xi,jYi,j ,

and

∀p = (p1, p2), q = (q1, q2) ∈ Y, < p, q >Y=
N∑
i=1

M∑
j=1

p1i,jq
1
i,j + p2i,jq

2
i,j .
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the gradient vector of X noted ∇X defined in Y such as ∇X = ((∇X)1, (∇X)2), where

(∇X)1i,j =

{
Xi+1,j −Xi,j if i < N

0 if i = N
, (∇X)2i,j =

{
Xi,j+1 −Xi,j if j < M

0 if j = M
. (6)

The adjoint operator associated to −∇ is defined by div : X 2 → X such as p = (p1, p2) ∈ X 2,
we have

∀w ∈ X , < div p, w >= − < p,∇w > .

Then

(div p)i,j = (div p)1i,j + (div p)2i,j , (7)

where

(div p)1i,j =


p1i,j − p1i−1,j if 1 < i < N

p1i,j if i = 1

−p1i−1,j if i = N

, (div p)2i,j =


p2i,j − p2i,j−1 if 1 < i < M

p2i,j if i = 1

−p2i,j−1 if i = M

.

the discretized version of the TV term, represented by J , is defined such as

J(X) =
N∑
i=1

M∑
j=1

|(∇X)i,j |,

where | . | is the Euclidean norm of R2, defined such as

|(∇X)i,j | = |
(
(∇X)1i,j , (∇X)2i,j

)
| =

√(
∇X)1i,j

)2
+
(
(∇X)2i,j

)2

To resolve the TV minimization problem, many algorithms have been proposed. In this paper,
we choose the Primal-dual (Chambolle & Pock, 2011) algorithm.

4 Second order Total Variation (TV2)

The main purpose to take the high-order TV is to smooth the regular part of the image and
avoiding the starcasing effect, keeping safe as possible the image contours. The associated Gibbs
function of the associated super-resolution problem is given by

p(X) = exp
{
−δ∥∇2X∥1

}
.

In the same way as for the regularization TV , it is necessary first of all to make sure of the
existence of solution. This done also by the relaxation techniques (see Aubert & Kornprobst
(2006)).

For the discretization step we will need some to define some operators discretized such as
the second order operator, noted ∇2

∇2X =
(
∇xxX ∇xyX ∇xyX ∇yyX

)
,

where

∇xxXi,j =


Xi,M2 − 2Xi,1 +Xi,2 if 1 ≤ i ≤ M1, j = 1,

Xi,j−1 − 2Xi,j +Xi,j+1 if 1 ≤ i ≤ M1, 1 < j < M2,

Xi,M2−1 − 2Xi,M2 +Xi,1 if 1 ≤ i ≤ M1, j = M2,
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∇yyXi,j =


XM1,j − 2X1,j +X2,j if i = 1, 1 ≤ j ≤ M2,

Xi−1,j − 2Xi,j +Xi+1,j if 1 < i < M1, 1 ≤ j ≤ M2,

XM1−1,j − 2XM1,j +X1,i if i = M1, 1 ≤ j ≤ M2,

on the other part, we have

∇xyXi,j =


Xi,j −Xi+1,j −Xi,j+1 +Xi+1,j+1 if 1 ≤ i < M1, 1 ≤ j < M2,

Xi,M2 −Xi+1,M2 −Xi,1 +Xi+1,1 if 1 ≤ i < M1, j = M2,

XM1,j −X1,j −XM1,j+1 +X1,j+1 if i = M1, 1 ≤ j < M2,

XM1,M2
−X1,M2

−XM1,1 +X1,1 if i = M1, j = M2.

In addition, for X = (X1, X2, X3, X4) ∈
(
RM

)4
, we define the operator div2 such as

(div2X)i,j = ∇xxX1i,j +∇yyX2i,j +∇xyX3i,j +∇xyX4i,j ,

where
∇xx = ∇xx, ∇yy = ∇yy,

and

∇xyXi,j =


X1,1 −X1,M2

−XM1,1 +XM1,M2
if i = 1, j = 1,

X1,j −X1,j−1 −XM1,j +XM1,j−1 if i = 1, 1 < j ≤ M2,

Xi,1 −Xi−1,M2
−Xi−1,1 +Xi−1,M2

if 1 < i ≤ M1, j = 1,

Xi,j −Xi,j−1 −Xi−1,j +Xi−1,j−1 if 1 < i ≤ M1, 1 < j ≤ M2.

To resolve this problem, we use the Primal-dual algorithm (Chambolle & Pock, 2011).

5 Combined TV and TV2 model

The combined TV and TV2 model has been introduced in many image processing task to
make some balance between the staircasing avoidance and the preservation of the edges. The
associated Gibbs function is defined such as

P (X) = exp {−δ∥∇X∥1} · exp
{
−(1− δ)∥∇2X∥1

}
, (8)

where δ is a positive parameter used the control the balance between these two terms. For
the discretization of this problem it is simple since we have already discretized the two terms
TV and TV2 previously. We also use the Primal-dual algorithm (Chambolle & Pock, 2011) to
resolve this problem.

6 The combined TV and BTV regularization

Based on the strong and weak points of the regularizations treated above, Laghrib et al. (2015)
have proposed to combine the regularization TV with the BTV term in the deconvolution and
denoising part of the super-resolution. The main idea behind this combination is to regularize
with a fairly large weight γ, in the term TV , in order to preserve the essential characteristics
of the reconstructed image, such as corners and contours, as best as possible. On the other
hand, the use of a small step δ for the term BTV preserves the smooth contours and avoids the
appearance of artifacts caused by the regularization TV . Thus, for the choice of the á priori
term, the Gibbs function is presented as follows

p(X) = exp

−γ∥|∇X|∥1 − δ

p∑
i=−p

p∑
j=−p

α|i|+|j|||X − Si
xS

j
yX||1

 . (9)
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This problem have been studied in Laghrib et al. (2015) with existence of the solution theorem
and comparative study with competitive super-resolution approaches.

7 Combined TV2 and BTV model

The main idea behind this combination is to use a large weight for the BTV regularization to
enhance sharp edges and also to correct the misregistration errors, and use the second order
regularizer to eliminate the staircasing caused by the BTV regularization without blurring the
image. The existence of a minimizer for this problem (second step of SR), which is a combination
of the BTV and second order variational regularization (see Laghrib et al. (2018b) for more
details).

p(X) = exp

−δ

p∑
i=−p

p∑
j=−p

α|i|+|j|∥X − Si
xS

j
yX∥1

 · exp
{
−(1− δ)∥∇2X∥1

}
,

where the operators Si
x and Sj

y shift X by i and j pixels in horizontal and vertical directions
respectively

Si
xX(x, y) = X(x+ i, y) and Sj

yX(x, y) = X(x, y + j).

This formulation depends on the following parameters

• α: a scalar weight, applied to give a spatially decaying effect to the summation of the
regularization terms, 0 < α < 1.

• p: the spatial window size, p ≥ 1.

• δ: the weight that controls the regularization combination. We define in the following how
it is calculated from the gradient of the image. This parameter can be computed using
learning techniques Lyaqini et al. (2020).

The first term is a measure of bilateral variation, containing a spatial decaying influence and
a color difference in the neighborhood. The solution of this problem is performed using the
Primal-dual algorithm.

8 Numerical Result

We propose here to compare the models TV + BTV (Laghrib et al., 2015) and BTV + TV 2

(Laghrib et al., 2018b) with bicubic interpolation, the TV regularization Rudin et al. (1992),
BTV Farsiu et al. (2004), TV 2 Bergounioux & Piffet (2010), and also the combination between
the regularizations TV and TV2 (TV + TV 2) Papafitsoros & Schönlieb (2014). To measure the
performance of these methods, we construct 40 low-resolution (LR) images with a Gaussian
kernel blur of standard deviation σ = 3.5 and a decimation factor r = 4. To measure the
robustness of these methods with respect to noise, we add a Gaussian noise with standard
deviation σnoise = 10 to all the LR constructed images. We represent the reconstructed images
by the different methods in the figures (1 to 12).

By a visual evaluation, we can deduce the effectiveness of the BTV +TV 2 model to eliminate
the artifacts. Note that we choose the regularization parameters, depending on the visually
pleasing result with the best PSNR in all experiments for the other methods.
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(a) LR image (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 1: The image super-resolution of the Baboon image using the TV and high-order regu-
larizations.

(a) Original (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 2: Zoom on a part of the obtained result in the previous test of Baboon image. We observe
that the staircasing effect is almost suppressed in the image obtained by the BTV +TV 2 method
when compared with the other methods. We can also see that the models TV + TV 2 and the
TV +BTV models suppress the staircasing effect, but do not preserve enough the contours and
the details of the image. On the other hand, it is interesting to see that the BTV + TV 2 model
behaves like the BTV model in areas with more details like the nose of the Baboon and like the
TV 2 model elsewhere.
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(a) LR image (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 3: The super-resolution of the LR sequence of Cameraman image using differents regu-
larizations.

(a) Original (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 4: Zoom on a part of the obtained results in the previous Figure compared to the original
image of Cameraman. We can observe the same thing as the previous test. 2.
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(a) LR image (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 5: The super-resolution result of the House image using different regularization terms.

(a) Original (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 6: Zoom on a part of the House image obtained using different regularization terms. We
can observe that the two models TV +TV 2 and BTV +TV 2 supress the noise while the texture
is preserved compared to other models.
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(a) LR image (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 7: The obtained super-resolution results of the Barbara image using different SR regu-
larizations.

(a) Original (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 8: Zoom on a part of the Barbara image obtained using different regularizations SR.
We can detect that the staircasing effect is less in the obtained image by the BTV + TV 2

regularization, compared to other models.
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(a) LR image (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 9: The super-resolution method of the Goldhill image using different regularization terms.

(a) Original (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 10: Zoom on a part of the super-resolved Goldhill image.
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(a) LR image (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 11: The super-resolution result of the Peppers image using different regularizations.

(a) Original (b) Bicubic zoom (c) TV reg. (d) BTV reg.

(e) TV 2 reg. (f) TV + TV 2 reg. (g) TV +BTV (h) BTV + TV 2

Figure 12: Zoom on a part of the super-resolved Peppers image.
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In Table 1, we calculate the associated SSIM and PSNR values for two standard deviations
of the noise. The best results are shown in bold. Generally, the method of combining BTV and
TV 2 outperforms the others in terms PSNR and SSIM . On the other hand, the result obtained
by the TV and BTV method exceeds the others for the Goldhill image in terms of PSNR and
SSIM . Indeed, we can find a better result if we change the value of the regularization parameter
δ calculated automatically (see Laghrib et al. (2018b)). We can say the same thing about the
Peppers image, in which the BTV regularization gives a better result at the level of SSIM
comparing to the others. However, we can deduce from the various tests that the combined
TV2 and BTV method is robust with respect to noise, comparing to the other methods. For
example, we get the best value of SSIM in the last image for σ = 15, while for σ = 10, the
BTV method was the best.

9 Conclusion

In this paper, comparisons between the TV and high order combination models are presented,
and their application for image super-resolution is tested. We present the detailed discretization
process based on the finite different scheme and numerical implementation. We draw some
conclusions about the advantages and disadvantages of these models using extensive comparative
experiments.
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